44 research outputs found

    Virtue integrated platform : holistic support for distributed ship hydrodynamic design

    Get PDF
    Ship hydrodynamic design today is often still done in a sequential approach. Tools used for the different aspects of CFD (Computational Fluid Dynamics) simulation (e.g. wave resistance, cavitation, seakeeping, and manoeuvring), and even for the different levels of detail within a single aspect, are often poorly integrated. VIRTUE (the VIRtual Tank Utility in Europe) project has the objective to develop a platform that will enable various distributed CFD and design applications to be integrated so that they may operate in a unified and holistic manner. This paper presents an overview of the VIRTUE Integrated Platform (VIP), e.g. research background, objectives, current work, user requirements, system architecture, its implementation, evaluation, and current development and future work

    Galaxy Zoo: The large-scale spin statistics of spiral galaxies in the Sloan Digital Sky Survey

    Get PDF
    We re-examine the evidence for a violation of large-scale statistical isotropy in the distribution of projected spin vectors of spiral galaxies. We have a sample of ∼37,000\sim 37,000 spiral galaxies from the Sloan Digital Sky Survey, with their line of sight spin direction confidently classified by members of the public through the online project Galaxy Zoo. After establishing and correcting for a certain level of bias in our handedness results we find the winding sense of the galaxies to be consistent with statistical isotropy. In particular we find no significant dipole signal, and thus no evidence for overall preferred handedness of the Universe. We compare this result to those of other authors and conclude that these may also be affected and explained by a bias effect.Comment: Accepted for publication in MNRAS. 8 pages, 5 figure

    Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    Get PDF
    We present morphological classifications obtained using machine learning for objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artifacts. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile-fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artifacts. Using a set of twelve parameters, the neural network is able to reproduce the human classifications to better than 90% for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine- learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.Comment: 13 Pages, 5 figures, 10 tables. Accepted for publication in MNRAS. Revised to match accepted version

    Galaxy Zoo 1 : Data Release of Morphological Classifications for nearly 900,000 galaxies

    Get PDF
    Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900,000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly available and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.Comment: Accepted by MNRAS, 14 pages. Updated to match final version; problem with table 7 header fixed. Full tables available at http://data.galaxyzoo.or

    Galaxy Zoo: Dust in Spirals

    Get PDF
    We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering.Comment: MNRAS in press. 25 pages, 22 figures (including an abstract comparing GZ classifications with common automated methods for selecting disk/early type galaxies in SDSS data). v2 corrects typos found in proof

    High-resolution mass models of dwarf galaxies from LITTLE THINGS

    Get PDF
    We present high-resolution rotation curves and mass models of 26 dwarf galaxies from LITTLE THINGS. LITTLE THINGS is a high-resolution Very Large Array HI survey for nearby dwarf galaxies in the local volume within 11 Mpc. The rotation curves of the sample galaxies derived in a homogeneous and consistent manner are combined with Spitzer archival 3.6 micron and ancillary optical U, B, and V images to construct mass models of the galaxies. We decompose the rotation curves in terms of the dynamical contributions by baryons and dark matter halos, and compare the latter with those of dwarf galaxies from THINGS as well as Lambda CDM SPH simulations in which the effect of baryonic feedback processes is included. Being generally consistent with THINGS and simulated dwarf galaxies, most of the LITTLE THINGS sample galaxies show a linear increase of the rotation curve in their inner regions, which gives shallower logarithmic inner slopes alpha of their dark matter density profiles. The mean value of the slopes of the 26 LITTLE THINGS dwarf galaxies is alpha =-0.32 +/- 0.24 which is in accordance with the previous results found for low surface brightness galaxies (alpha = -0.2 +/- 0.2) as well as the seven THINGS dwarf galaxies (alpha =-0.29 +/- 0.07). However, this significantly deviates from the cusp-like dark matter distribution predicted by dark-matter-only Lambda CDM simulations. Instead our results are more in line with the shallower slopes found in the Lambda CDM SPH simulations of dwarf galaxies in which the effect of baryonic feedback processes is included. In addition, we discuss the central dark matter distribution of DDO 210 whose stellar mass is relatively low in our sample to examine the scenario of inefficient supernova feedback in low mass dwarf galaxies predicted from recent Lambda SPH simulations of dwarf galaxies where central cusps still remain.Peer reviewe

    Galaxy Zoo: Chiral correlation function of galaxy spins

    Get PDF
    Galaxy Zoo is the first study of nearby galaxies that contains reliable information about the spiral sense of rotation of galaxy arms for a sizeable number of galaxies. We measure the correlation function of spin chirality (the sense in which galaxies appear to be spinning) of face-on spiral galaxies in angular, real and projected spaces. Our results indicate a hint of positive correlation at separations less than ~0.5 Mpc at a statistical significance of 2-3 sigma. This is the first experimental evidence for chiral correlation of spins. Within tidal torque theory it indicates that the inertia tensors of nearby galaxies are correlated. This is complementary to the studies of nearby spin axis correlations that probe the correlations of the tidal field. Theoretical interpretation is made difficult by the small distances at which the correlations are detected, implying that substructure might play a significant role, and our necessary selection of face-on spiral galaxies, rather than a general volume-limited sample.Comment: 9 pages, 5 figures; v2: minor changes, matches version accepted by MNRA

    Sheep Updates 2007 - part 4

    Get PDF
    This session covers eight papers from different authors: GRAZING 1. The impact of high dietary salt and its implications for the management of livestock grazing saline land, Dean Thomas, Dominique Blache, Dean Revell, Hayley Norman, Phil Vercoe, Zoey Durmic, Serina Digby, Di Mayberry, Megan Chadwick, Martin Sillence and David Masters, CRC for Plant-based Management of Dryland Salinity, Faculty of Natural & Agricultural Sciences, The University of Western Australia, WA. 2. Sustainable Grazing on Saline Lands - outcomes from the WA1 research project, H.C. Norman1,2, D.G. Masters1,2, R. Silberstein1,2, F. Byrne2,3, P.G.H. Nichols2,4, J. Young3, L. Atkins1,2, M.G. Wilmot1,2, A.J. Rintoul1,2, T. Lambert1,2, D.R. McClements2,4, P. Raper4, P. Ward1,2, C. Walton5 and T. York6 1CSIRO Centre for Environment and Life Sciences, Wembley, WA 2CRC for Plant-based Management of Dryland Salinity. 3School of Agricultural and Resource Economics, University of Western Australia. 4Department of Agriculture and Food WA. 5Condering Hills, Yealering. 6Anameka Farms, Tammin. MEAT QUALITY 3. Development of intramuscular fat in prime lambs, young sheep and beef cattle, David Pethick1, David Hopkins2 and Malcolm McPhee3,1School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA, 2NSW Department of Primary Industries, Cowra, NSW,3NSW Dept. of Primary Industries, University of New England, Armidale, NSW, 4. Importance of drinking water temperature for managing heat stress in sheep, Savage DB, Nolan JV, Godwin IR, Aoetpah A, Nguyen T, Baillie N and Lawler C University of New England, Armidale, NSW, Australia EWE MANAGEMENT TOOLS 5. E - sheep Management of Pregnant Merino Ewes and their Finishing Lambs, Ken GeentyA, John SmithA, Darryl SmithB, Tim DyallA and Grant UphillA A Sheep CRC and CSIRO Livestock Industries, Chiswick, NSW B Turretfield Research Station, SARDI, Roseworthy, SA 6. Is it important to manage ewes to CS targets? John Young, Farming Systems Analysis Service, Kojonup, WA MULESING 7. Mulesing accreditation - Vital for Wool\u27s Future, Dr Michael Paton, Department of Agriculture and Food WA, 8. Mulesing Alternatives, Jules Dorrian, Affiliation Project Manager Blowfly Control Australian Wool Inovatio

    Galaxy Zoo: a sample of blue early-type galaxies at low redshift

    Get PDF
    ‘The definitive version is available at: www3.interscience.wiley.com '. Copyright Blackwell / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14793.xWe report the discovery of a population of nearby, blue early-type galaxies with high star formation rates (0.5 < SFR < 50 M⊙ yr−1) . They are identified by their visual morphology as provided by Galaxy Zoo for Sloan Digital Sky Survey Data Release 6 and their u−r colour. We select a volume-limited sample in the redshift range 0.02 < z < 0.05 , corresponding to luminosities of approximately L* and above and with u−r colours significantly bluer than the red sequence. We confirm the early-type morphology of the objects in this sample and investigate their environmental dependence and star formation properties. Blue early-type galaxies tend to live in lower density environments than 'normal' red sequence early-types and make up 5.7 ± 0.4 per cent of the low-redshift early-type galaxy population. We find that such blue early-type galaxies are virtually absent at high velocity dispersions above 200 km s−1 . Our analysis uses emission line diagnostic diagrams and we find that ∼25 per cent of them are actively star forming, while another ∼25 per cent host both star formation and an active galactic nucleus (AGN). Another ∼12 per cent are AGN. The remaining 38 per cent show no strong emission lines. When present and uncontaminated by an AGN contribution, the star formation is generally intense. We consider star formation rates derived from Hα, u band and infrared luminosities, and radial colour profiles, and conclude that the star formation is spatially extended. Of those objects that are not currently undergoing star formation must have ceased doing so recently in order to account for their blue optical colours. The gas-phase metallicity of the actively star-forming blue early-types galaxies is supersolar in all cases. We discuss the place of these objects in the context of galaxy formation. A catalogue of all 204 blue early-type galaxies in our sample, including star formation rates, emission line classification is provided.Peer reviewe
    corecore